Skip to main content

Staphylococcus aureus contamination of animal-derived foods in Nigeria: a systematic review, 2002—2022

Abstract

Background

Staphylococcus aureus (S. aureus) is a bacterium of public health importance. The zoonotic spread of this pathogen through animal-derived foods has been reported. This systematic literature review investigates the prevalence, distribution, antimicrobial resistance (AMR) profiles, and molecular characteristics of S. aureus in the food chain in Nigeria.

Methods

A systematic search of online databases (Pub Med, Google Scholar, and Web of Science) for published articles from January 2002 to January 2022 was performed using the Prisma guideline.

Results

Fifty articles were included from an initial 511 extracted documents. These papers included research carried out in 22 states across Nigeria. S. aureus detection in most studies was above the satisfactory level for foods (≥ 104 CFU/g). The prevalence of S. aureus ranged from 1.3% in raw cow meat to 72.5% in fresh poultry meat. Most S. aureus isolates demonstrated multiple drug resistance patterns, especially being resistant to beta-lactams. There is a lack of information on the molecular typing of the S. aureus isolates. The different spa types of S. aureus isolated were t091, t314, t1476, and t4690, categorized into Multi-Locus-Sequence Types ST8, ST121, ST152, and ST789. Virulence genes detected include pvl, sea, see, spa, coa, edin, tsst, and hly. Certain AMR-encoding genes were detected, such as mecA, blaZ, fos, tet, and dfsr.. Factors contributing to the presence of S. aureus were reported as poor processing, poor sanitary conditions of the food processing units, inadequate storage units, and poor handling.

Conclusion

We showed that S. aureus is a major food contaminant in Nigeria despite the need for more information on the molecular typing of strains from animal-derived food sources. There is a need to control S. aureus by targeting specific entry points based on the findings on risk factors and drivers of food contamination.

Introduction

Staphylococcus aureus (S. aureus) is a symbiotic (commensal) and opportunistic pathogen that can cause many illnesses. It is a significant and ubiquitous bacterium because of its toxin-mediated pathogenicity, invasiveness, and antimicrobial resistance (AMR) (Oranusi et al. 2006; Yamada 2013). This organism has become a major cause of nosocomial and community-acquired illnesses (Taiwo et al. 2004; GBD 2019 Meningitis and Antimicrobial Resistance Collaborators 2023). Although S. aureus does not produce spores, it can contaminate food during preparation and processing, with subsequent staphylococcal enterotoxin (SE) production resulting in staphylococcal food poisoning (Kadariya et al. 2014). S. aureus thrives in potentially arid and harsh environments and on inanimate objects like clothing, surfaces, the human nose, and skin (Le Loir et al. 2003), favouring its growth in many food products (Cretenet et al. 2011). The environmental conditions experienced in tropical countries, including Nigeria, are suitable for the growth and dissemination of S. aureus .

S. aureus can multiply and produce toxins in food (Le Loir et al. 2003). The enterotoxins produced by this bacterium have been linked to staphylococcal food contamination resulting from poor hygiene by food handlers, packaging inadequacies, sterilizing errors, and contamination of surfaces, utensils, and equipment used in handling food for consumption (Kümmel et al. 2016; György et al. 2021; Gebremedhin et al. 2022).

S. aureus-related Foodborne illnesses (FBIs) can be contracted by consuming contaminated foods such as meat, fish, milk and its products, eggs, and other food products (Do Prado et al. 2021; Gebremedhin et al. 2022). This results in minor boil infections and other food poisoning conditions, characterized by nausea, sweating, dizziness, vomiting, hypothermia, stomach cramps, weakness, lethargy, and diarrhoea for 1–6 h after eating contaminated foods (Palupi et al. 2010). Unhygienic conditions and poor handling of animal-derived foods contaminated with pathogenic microbes like S. aureus impact the burden of Foodborne diseases (FBDs) (Abunna et al. 2016). S. aureus is categorized as a zoonotic pathogen of significant public health and veterinary importance, especially since the emergence of the methicillin-resistant S. aureus (MRSA) in food animals in Nigeria (Odetokun et al. 2018; 2022; Okorie-Kanu et al. 2020).

In 2019, S. aureus was regarded as one of the six leading pathogens responsible for mortality due to AMR, with the highest-burden noted in sub-Saharan Africa (Antimicrobial Resistance Collaborators 2022). Due to its public health significance, it is a priority to review the occurrence and distribution of S. aureus in food of animal origin in Nigeria, especially as S. aureus continues to contaminate animal-derived foods, causing FBIs. Therefore, this study aims to review and provide recent evidence on the contamination, prevalence, distribution, antibiotic resistance, and molecular characteristics of S. aureus in animal-derived foods in Nigeria.

Methods

Study design

A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Mourad et al. 2016; Page et al. 2021). This ensures a reduction of bias in the review process and guarantees that the reviewer do not influence relevant information regarding the review and its findings (Ghia et al. 2020).

Search strategy, selection criteria, and data extraction

The search terms developed for the articles’ search were (“Foodborne” OR “Animal food” AND “Staphylococcus aureus” AND “Contamination” OR "Prevalence” AND “Nigeria”). The search was conducted in three databases: Pub Med, Google Scholar, and Web of Science. These databases were adopted because of their reliability, accessibility, and renowned indexed contents of research articles. The searched articles were limited to original papers written in English, reporting research conducted in Nigeria and published from January 2002 to January 2022. For Google scholar, the articles considered were within the first 10 online pages. Original research articles of various study designs and studies related to the prevalence, distribution, isolation, and molecular characterisation of S. aureus in foods of animal origin were considered. The timeline of 2002 to 2022 was chosen based on the increased consumption of food animals in Nigeria within these periods (Salman et al. 2021). All articles that did not meet the inclusion criteria were excluded.

Initially, a general search was carried out using the search terms described above, total results were recorded (Fig. 1), and duplicate articles from the three databases were removed. All the results were saved on the databases and in an Excel sheet (CSV files) and exported to Rayyan (a web/mobile-based intelligent research collaboration programme for systematic reviews) for further screening.

Fig. 1
figure 1

Prisma chart showing articles identified, screened, and included in the review

Four researchers performed the screening process. Studies not fulfilling the selection criteria were excluded based on titles and abstracts at primary screening. The articles included were assessed during a secondary screening process based on relevance to the research question by reviewing the articles’ full texts. The entire screening process was pair-reviewed for efficiency and to reduce errors. All discrepancies were resolved by consensus between the reviewers before proceeding to the next stage. All the screenings and the designated reasons for excluding articles were recorded. Finally, the selected articles adopted for the review focused on the search terms outlined earlier.

Assessment of risk of bias

To assess the within-study bias, we used the quality of the studies’ designs and the reported microbiological methods for S. aureus isolation and characterisation from the animal-derived foods.

Results and discussion

This systematic review presents the findings of the staphylococcal contamination of foods of animal origin in Nigeria. We found high staphylococcal counts and prevalence in raw and processed foods from reported studies. Foodborne isolates of S. aureus demonstrated high resistance rates to commonly used antibiotics, especially penicillin and methicillin. Studies detailing the molecular characteristics of S. aureus from animal-derived foods in Nigeria are scarce. Several factors contributing to the staphylococcal contamination of foods were identified.

Distribution of articles included in the review

At the end of the search from the databases used, 511 records were extracted (Fig. 1). Duplicates of 78 articles were removed, leaving 433 articles available for further screening. The articles were subjected to primary screening by title and abstract, where 312 articles were excluded. At the secondary screening of the full text articles, 71 articles from 121 were excluded, leaving 50 for the systematic review. Finally, 50 papers were included in this study. These records were published from studies carried out in 22 states of Nigeria (Table 1). Kaduna, Ogun, and Oyo states have the highest records of studies (six records each). From the timeline of 2002 – 2022 considered in this study, most studies (seven each) were published in 2016 and 2020. Seventeen articles reported the microbial load of S. aureus in foods of animal origin/food animal products, forty-two described the prevalence, thirty-three stated results for antimicrobial resistance/susceptibility pattern, fourteen showed molecular characteristics of S. aureus isolated from animal-derived foods/products, while eleven articles related the quality assessment of S. aureus in animal-derived foods/products in Nigeria.

Table 1 Distribution of the articles used in the review

Contamination of food of animal origin by S. aureus

Studies in this category were conducted to detect the presence of S. aureus that would render food products unfit for consumption (Table 2). In this section, however, emphasis was placed on S. aureus detection above the satisfactory/acceptable level in foods (≥ 104 CFU/g). Nine studies were classified in this category from different states. In Sokoto State, Nigeria, local fried ground beef was tested for its bacterial quality (Salihu et al. 2010). The results obtained were generally higher than acceptable limits, and those of S. aureus were also high. Oyet et al. (2020) reported from Rivers State using selected street-vended foods as test samples and found a high total Staphylococcal count (TSC) (6.00 to 8.00 log10 CFU/g) in roasted fish in the rainy season. Similarly, the highest TSC was observed in roasted fish and plantain in the dry season; no growth was detected in the other food products (meat pie, doughnuts, and fried yam). Ologhobo et al. (2010) worked on barbecued beef and chicken in the Ibadan metropolis, comparing the leftover, unheated, spiced, and roasted “suya” (tender beef threaded on a skewer and then baked or grilled in a tantalizing spicy peanut sauce) between days. The results indicated S. aureus contaminating processed beef and chicken “suya'' samples before and after heating on all days. After rinsing, Ogofure and Igbinosa (2021) compared bacterial load (including S. aureus) in frozen meat and fish sold for human consumption in Benin City, Nigeria. The results showed a significant reduction in the bacterial counts of the samples; from 11.53 ± 1.25 log10 CFU/g (beef), 11.16 ± 0.95 log10 CFU/g (fish), and 11.42 ± 1.58 log10 CFU/g (chicken) before rinsing, to total counts of 2.70 ± 0.45 log10 CFU/g (beef), 2.68 ± 0.25 log10 CFU/g (fish), and 2.79 ± 0.49 log10 CFU/g (chicken), respectively, after rinsing.

Table 2 Contamination of foods of animal origin in Nigeria by S. aureus

In Abeokuta, S. aureus was isolated from all the “suya” samples meant for consumption (Obadina et al. 2014). The study revealed that raw meat was a source of contamination and processing methods of the meat (slicing, spicing, steaking, washing, and smoking) due to the numerous contaminant sources involved in these processes. Similarly, Edema et al. (2008) reported the same results from two different locations (first location—1.80 × 105 CFU/g /ml), second location—1.53 × 105 CFU/g/ml) from “suya” spots in the southwestern region of Nigeria. Edema and Atayese (2006) showed that frying cracked eggs did not affect the bacterial concentration in the eggs. However, steaming (for 20–30 min and baking had a positive effect by ridding of the S. aureus (fried eggs—1.9 × 107 (CFU/ml), steamed (20 min)—2.4 × 107 (CFU/ml), steamed (30 min)—2.0 × 107 (CFU/ml), baked eggs—1.9 × 107 (CFU/ml).

In another study, fresh goat meat sold in Abia State showed that unhygienic and poor sanitary conditions contributed to the unwholesomeness of the meat for consumption (Eze and Nwosu 2012). Traditionally smoked fish in areas of Lagos State showed that smoking affected the quality and reduced the fish’s water activity (moisture), which had a resultant effect on S. aureus levels. The study of fresh samples of different fish breeds showed varying levels of contamination (Silver catfish—5.4 × 102 CFU/g, Spotted tilapia—4.7 × 102 CFU/g, Bonga shad—8.1 × 102 CFU/g, Tongue sole—7.1 × 102 CFU/g, Fresh barracuda—6.3 × 102 CFU/g) while smoked samples contained from the same breeds showed the following contamination levels: Silver catfish—23.4 × 102 CFU/g, Spotted tilapia—57.3 × 102 CFU/g, Bonga shad—49.0 × 102 CFU/g, Tongue sole—48.0 × 102 CFU/g, and Barracuda—21.1 × 102 CFU/g, respectively (Adeyeye et al. 2015).

The reported loads of S. aureus from the studies were higher than the satisfactory level of < 104 CFU/g recommended in foods (Ologhobo et al. 2010). Satisfactory TSC load was reported in chicken meat in Kathmandu Valley, Nepal (Maharjan et al. 2019). Other studies have reported higher counts of S. aureus in chicken meat at unsatisfactory levels (Joshi and Joshi 2010; Sengupta et al. 2012; Kuncara et al. 2022). Comparably in the formal and informal meat sectors of South Africa, TSC on raw meat (after washing) from cattle, sheep, and pigs ranged from 2.8 ± 1.8 to 3.8 ± 2.4, 2.9 ± 1.7 to 4.0 ± 2.5, and 2.7 ± 1.5 to 3.2 ± 1.7 log CFU/cm2, respectively (Jaja et al. 2018). Food contamination with S. aureus reflects poor sanitary operations during food handling and processing.

Prevalence of S. aureus in foods of animal origin

The prevalence levels of S. aureus in various food samples, including meat, fish and seafood, milk, and milk products, are presented in Table 3. Seven studies reported the prevalence of S. aureus in cow milk and its products. The lowest prevalence of MRSA in milk samples was reported in Nasarawa State in a study conducted by Yakubu et al. (2020), which revealed a prevalence of 5% (9/180). In a study by Omoshaba et al. (2020) in Abeokuta, the detection rate of MRSA in raw milk was 18.5% (37/200).

Table 3 Prevalence of S. aureus/MRSA in food/food products of animal origin in Nigeria

Other four studies were conducted in Kaduna and its environs (Umaru et al. 2014; Usman et al. 2016; Okpo et al. 2017; Esonu et al. 2021). Usman et al. (2016) found an overall prevalence of 3.1% from yoghurt and “nono” samples. Nine MRSA isolates (one yoghurt and eight nono isolates) were confirmed from the 24 isolates, and the occurrence of S. aureus was higher in nono (24) than in yoghurt (10). Another study reported a prevalence of 8.7% from similar samples (Okpo et al. 2017). Umaru et al. (2014) reported the highest prevalence from milk samples, with 47 (12.4%) S. aureus isolates observed from 372 milk (raw milk, bulk milk, “kindirmo”, pasteurized milk, and yoghurt) samples. A recent study reported a prevalence of 3.1% with 28 isolates out of 90 samples of pasteurized milk, “ghee”, and fresh milk samples in Zaria and its environs (Esonu et al. 2021).

Thirteen studies on prevalence in meat samples revealed a consistent presence of S. aureus in meat and meat products. From 300 samples analysed in one study, 138 S. aureus isolates were recovered, giving a prevalence of 31.1% (Adesiji et al. 2011). Another survey on ready-to-eat foods reported about 32.1% prevalence of the S. aureus isolates detected from the meat/meat-related samples (Achi and Madubuike 2007). Analysis of barbequed meat from selected locations in Abuja revealed that “suya” contained isolates of S. aureus. Four samples of raw and barbequed meat were sampled from each location, and S. aureus was confirmed in at least one of the samples (Alonge et al. 2017).

Other studies reported different prevalence of S. aureus, including 71.6% in raw meat sampled in Awka, Anambra State (Akagha et al. 2015), 39.7% of MRSA in Benin City with 50 S. aureus isolates from 126 meat samples, 26 from pork, 14 from beef, and 10 chicken samples (Igbinosa et al. 2016a). In northern Nigeria, Ndahi et al. (2014) reported results on raw meat and meat products in areas of Zaria with a prevalence of 33.7% (101 from 300 samples). In Keffi, out of 40 poultry meat samples, 29 S. aureus isolates were isolated, as reported by Owuna et al. (2015), showing high frequency.

The prevalence pattern for S. aureus in this review ranged from relatively low (5.0%) (Yakubu et al. 2020) to high (72.5%) (Owuna et al. (2015). Other studies conducted in Africa reported a high prevalence of S. aureus. For instance, in South Africa, Ateba et al. (2010) reported a prevalence of 100% in milk from different farm settings in Mafikeng, South Africa, while Abebe et al. (2016) reported a 74.7% prevalence from cows sampled in Ethiopia. S. aureus contaminates raw cow milk more than milk from other animals (Deddefo et al. 2022). In other climes, a study in Bangladesh reported a prevalence of 74.0% from milk samples (Hoque et al. 2018), and 72.5% and 28.3% were reported in Poland and Turkey, respectively (Kirkan et al. 2005). The high prevalence was thought to result from poor handlers' hygiene, poor storage conditions, contamination during the processing, distribution/retail points, and inadequate sanitary conditions during processing (Akagha et al. 2015; Akinwumi and Adegbehingbe 2015; Bodunde et al. 2019). Other factors causing the observed prevalence were the state of an animal before slaughter (Abebe et al. 2016) and during milk collection (Hoque et al. 2018).

Antimicrobial resistance of S. aureus isolated from food of animal origin

Twenty-seven (27) studies reported antimicrobial resistance profiles for sixteen (16) antibiotics. The average resistance rate is presented in Fig. 2. The lowest average resistance was for ciprofloxacin, with 23%, while the highest was 100% for penicillin and methicillin, demonstrating that all studies reported resistance to these two latter antibiotics. There was an average of 77% resistance to cefoxitin and 66%, 64%, and 61% to ampicillin, oxacillin, and augmenting, respectively. The average resistance of 59%, 57%, 56%, and 50% was stated for ceftriaxone, amoxicillin, tetracycline, and erythromycin, respectively. Six antibiotics had averaged resistance below 50% (vancomycin: 49%, streptomycin: 47%, sulphamethoxazole: 47%, chloramphenicol: 36%, and gentamycin: 30%), while the lowest average resistance by S. aureus isolates is 23% for ciprofloxacin. The resistance rate to antimicrobials by S. aureus isolates of food of animal origin in Nigeria is presented in Table 4. Thirty-two studies reported antimicrobial resistance profiles in this review.

Fig. 2
figure 2

Average resistance rate of reported antibiotics from all studies. CIP (Ciprofloxacin); ERY (Erythromycin); AMX (Amoxicillin); MET (Methicillin); OXA (Oxacillin); GEN (Gentamicin); CHL (Chloramphenicol); SXT (Sulphamethoxazole); TET (Tetracycline); AMP (Ampicillin); PEN (Penicillin); S (Streptomycin); VAN (Vancomycin); AUG (Augmentin); FOX (Cefoxitin); CTR (Ceftriaxone)

Table 4 Percentage resistance demonstrated by S. aureus isolates to selected antibiotics

For antibiotic susceptibility, the profiles showed a large percentage of resistance to beta-lactams—penicillin, oxacillin, methicillin, ampicillin, and amoxicillin (Umaru et al. 2014; Ndahi et al. 2014; Ogundipe et al. 2020; Omoshaba et al. 2020; Beshiru et al. 2021) similar to the findings in slaughtered food animals in Nigeria (Suleiman et al. 2012; Odetokun et al. 2022). This is also consistent with the findings of Ateba et al. (2010), who reported a multi-drug resistance profile of S. aureus isolates in South Africa with high resistance to methicillin, ampicillin, penicillin, sulphamethoxazole, oxytetracycline, erythromycin, nitrofurantoin, and streptomycin. The observed resistance rates of isolates to commonly used antibiotics in this study were linked to several factors like indiscriminate use of drugs in live animals (Akagha et al. 2015; Igbinosa et al. 2016a) and the presence of genes responsible for antibiotic resistance from S. aureus isolates from animals (Okorie-Kanu et al. 2020; Odetokun et al. 2022). These findings also corroborate studies in other world regions that reported the advent of resistant strains due to frequent/over-use of antimicrobials over a long period (Kumar et al. 2010; Rall et al. 2014).

Penicillin and methicillin had the highest average resistance from the review. A study in China by Zhang et al. (2012) also reported the highest resistance by S. aureus isolates to penicillin (90.0%) from pig and chicken carcasses. Other studies in this review (Bello et al. 2013; Grema et al. 2015; Okpo et al. 2017; Abdulrahman et al. 2018; Yusuf et al. 2019a, b) also reported high resistance to tetracycline, gentamicin, second-generation and third-generation cephalosporins (ceftriaxone, cefuroxime, cefotaxime). Havaei et al. (2014) recorded resistance for tetracycline 36%, gentamicin 22%, cefoxitin 18%, clindamycin 12%, ciprofloxacin 12%, levofloxacin 6%, rifampicin 6%, and 0% for vancomycin. However, some studies showed susceptibility of S. aureus to antibiotics, including trimethoprim/sulphamethoxazole (Suleiman et al. 2013) and gentamicin (Owuna et al. 2015), and is similar to earlier findings where all the strains were susceptible to vancomycin and trimethoprim-sulfamethoxazole (Zhang et al. 2012). For most S. aureus strains tested (Hoque et al. 2018), there was a resistance to oxytetracycline, oxacillin, ciprofloxacin, amoxicillin, trimethoprim/sulfamethoxazole, while gentamicin, penicillin, and erythromycin were less resistant.

Molecular types and virulence characteristics of S. aureus isolated from foods of animal origin

A summary of the common molecular characteristics of S. aureus detected in various studies is presented in Table 5. Molecular typing of S. aureus from food of animal origin in Nigeria is limited. In Nigeria, the mecA gene was detected in raw meat and meat products (Ndahi et al. 2014), fermented milk and yoghurt (Usman et al. 2016), fresh milk and milk products (Yakubu et al. 2020), and ready-to-eat shellfish (Egege et al. 2020). Other reported genes used to type S. aureus include balZ, nuc, and coa. Whole genome sequencing of chicken revealed four spa types (t091, t314, t1476, and t4690), four Direct Repeat Unit (dru) types (dt9aw, dt10dr, dt11a, and dt11dw), three Staphylococcal Cassette Chromosome mec (SCCmec) types (SCCmec IVa, SCCmec V, and SCCmec Vc), and four sequence types (ST8, ST121, ST152, and ST789) which differ mainly based on the different sample locations (Ogundipe et al. 2020). S. aureus isolates from ready-to-eat seafood revealed several virulence and antimicrobial resistance genes (ARGs) such as coa, hla, icaA, icaB, and spa (Beshiru et al. 2021). Other virulence determinants detected include sea, seo, sek, see, seb, pvl, tsst, sep, ser, sel, sed, sei, ser, and seu. The ARGs detected were mecA, tetK, blaZ, aac(6′)-Ie-aph(2’’)-Ia, ant(4′)-Ia, aph(3′)-IIIa, dfrD, ermA, ermB, ermC, dfrK, dfrG, cat::pC194, cat:: pC221, sulIII, sulII, and sulI (Beshiru et al. 2021).

Table 5 Detection of selected virulent determinants in S. aureus isolates from foods of animal origin

The ARG and resistance-mediating mutations detected were: mecA (methicillin resistance gene), trimethoprim resistance gene dfrG, and the tetracycline resistance gene tetK. Other resistance genes detected were blaZ, fosB, tetK, aacA-aphD, aphA3, msr(A), mph(C), dfrS1, and sat4. The virulence genes reported were: fnbA, icaA, icaB, icaC, icaD, and icaR associated with adhesion and biofilm production, those associated with cell lysis and tissue invasion (aur, clpP, coa, esaA, esaB, geh, lip, sspA, sspB, sspC, vWbp), associated with blood cell lysis (hla, hlb, hld, hlgB, hlgC, hly), the genes associated with immune evasion (cap, chp, spa, sbi, scn) and iron uptake (strB, isdA, isdB, isdC, isdD, isdE, isdF, isdG) (Beshiru et al. 2021). Finally, Ogofure and Igbinosa (2021) and Igbinosa et al. (2016a) also worked on food-producing animals. They detected the presence of mecA, 16S rRNA, and pvl genes using PCR in all the S. aureus strains isolated.

Only a few studies carried out the molecular characterization of virulence genes of S. aureus isolated from food of animal origin in Nigeria. Virulence genes, including coa, tsst, edinB, pvl, sea, sec, see, cap, chp, icaA, icaB, hly, hlg, Luk, and dru have also been identified from animals and the food processing environment, such as the abattoir in Nigeria (Suleiman et al. 2013; Ogundipe et al. 2020; Beshiru et al. 2021; Ogofure and Igbinosa 2021; Odetokun et al. 2022). These genes confer the abilities for cell invasion, tissue invasion, cell adhesion, toxin production, and immune evasion on the isolates. AMR genes including mecA, blaZ, mph, sat, erm, sul, dfsr, fos, tet, and SCCmec (Ndahi et al. 2014; Usman et al. 2016; Egege et al. 2020; Odetokun et al. 2022). Hoque et al. (2018) in Bangladesh also detected a combination of six genes (pvl, see, seb, sea, sec, and sed). Also, 67.8% of isolates cultured in a study in Turkey had genes encoding for enterotoxins (Turutoglu et al. 2006). The only spa types (t091, t314, t1476, and t4690) documented from food of animal origin were from chicken. This is comparable to other known circulating types isolated from human and animal samples. Several different spa types (t346, t4690, t304, t355, t786, t1931, t448, t18346, t2216, t279, t18345, t085, t2393, t5562, t934, t14223 and t491) clustered into six CCs (CC1, CC8, CC5, CC152, CC15, and CC88) were detected from pigs and chicken (Okorie-Kanu et al. 2020). Also, 19 different spa types (including t091) from humans and animals (cattle, goat, and pig) from abattoirs were previously confirmed (Odetokun et al. 2018). Though no study on the food of animal origin has reported circulating CCs of S. aureus, the SCCmec types IVa and V and CC1, CC88, and CC152 appear to be widely circulated in Nigeria’s food processing environment (Okorie-Kanu et al. 2020; Odetokun et al. 2022). The CC88 is denoted as the African Clone (Lozano et al. 2016).

Factors influencing S. aureus contamination of food of animal origin

This outcome represents studies that provided information on the various reasons or conditions contributing to the concentration of S. aureus in animal-derived foods/products (Table 6). One study on fresh and smoked fish (Clarias gariepinus) attributed the higher levels of microorganisms (S. aureus inclusive) in fresh fish to poor handling, delayed processing, and preservation (Abolagba and Igbinevbo 2010). The microbial load observed in smoked fish was associated with poor sanitary practices in the markets, poor packaging, and inefficiency of the smoking process. Another study on smoked fish (Catfish, Herring, and Tilapia) observed a higher load in the catfish and attributed the results to the specific environment where the fish were harvested in contaminated waters, not particularly to the species (Akinwumi and Adegbehingbe 2015). There were also sanitary implications as smoked fish were reported to be displayed in dirty and unkempt areas on the market floor, which could hasten the contamination of the fish. The quality of smoked products was said to depend on several factors, including the condition of the fish at the time of smoking, the method of preparing the raw material to be used, the type of wood, and the smoking procedure employed. Dike-Ndudim et al. (2014) compared the microbial status of factory-smoked, market-smoked, and hawked-smoked. The Hawked-smoked fish showed the highest microbial loads attributed to increased contamination potential while moving the fish from one location to another under poor hygiene and sanitary practice. The microbial loads in factory-smoked fish were associated with errors in the pre/post handling/smoking procedures (inadequate dehydration). This report also revealed that smoking procedures do not eliminate the microbial load of fresh fish proven to be naturally high due to the nature of their habitat. Bacterial examination results of barbeque fish sold in Delta State were majorly attributed to poor fish handling by processors and traders (exposure of fish to unsanitary conditions) and post-processing contamination (Orogu et al. 2018). Okonko et al. (2008a) studied frozen shrimps in Ibadan and Lagos, showing high concentrations in unprocessed shrimps, which were attributed to poor handling and hygiene.

Table 6 Factors contributing to the occurrence and distribution of S. aureus in foods of animal origin in Nigeria

Bodunde et al. (2019) compared the microbial level of S. aureus in meat (muscle food). This was compared to pork, turkey, beef, chicken, chevon, and fish, with the highest level recorded in pork and the lowest in chevon. S. aureus was the second most predominant (20.3%) bacteria cultured in the foods. These results were associated with sanitary conditions. The low levels observed in meat and fish sampled from cold rooms were linked to storage under cold temperatures that inhibit bacterial growth. Adesokan et al. (2020) reported results for meat stored in different cold rooms in a study in Ibadan, with 42.2% of the bacteria reported as S. aureus. The results observed from this study were suggestive of substandard operational quality of the cold room operators, including poor temperature maintenance, frequent thawing, and freezing cycles, all indicative of poor preservation. Poultry meat is easily contaminated along the processing lines, and critical control points must be applied to limit bacterial contamination (Adetunji and Odetokun 2013). Bacterial contamination of raw meat in Abakiliki, Ebonyi State (Iroha et al. 2011) was compared among beef, chevon, and chicken. S. aureus, the least isolated (1.3%) from these samples, was thought to result from the method of slaughter at the abattoir, promoting contamination by other faecal coliforms. However, the microbial profile of roasted beef in Abuja showed 54% of S. aureus (Amaeze et al. 2016). These results showed that the meat was unfit for consumption and indicated poor sanitary and processing/handling practices as is typically observed in most Nigerian slaughterhouses and retail environments (Adetunji and Odetokun 2011; Odetokun et al. 2020, 2021a, 2021b).

Fresh and frozen chicken samples from traditional markets and processing units were tested for microbial load (Olukemi et al. 2015). S. aureus had the highest concentration in both locations, 84% in the market and 52% from processing units. The result was linked to numerous points of contamination at the markets by rodents, insects, sewage waste, and the low concentration at the processing units due to a more controlled environment with freezing and other sanitary condition for processing the carcasses for sale. The results could also be a pointer to the level of handlers’ hygiene. In the study of sausage samples sold in Abeokuta (Oluwafemi and Simisaye 2006), the total viable counts were within acceptable limits, while those from Benin City differed. This was associated with improper cleaning and sanitizing of equipment used, poor hygiene of handlers within the storage unit, and erratic power supply. The analysis of bacterial counts of raw meat and roasted meat "tsire-suya” samples (Uzeh et al. 2006) indicated the presence of contaminants during meat processing. In Owerri, bacterial assessment of beef processed at the slaughterhouses revealed total bacteria levels, albeit not exclusive to S. aureus, were higher than acceptable limits, indicative of poor sanitary conditions and poor handlers' hygiene (Uzoigwe et al. 2021). The occurrence of S. aureus in Birnin-Kebbi central market beef samples resulted from cross-contamination of meat with human body discharges, poor hygiene, handling, and processing (Yusuf et al. 2019a, b).

Although several reports identified isolated S. aureus to be unsatisfactory levels, the findings in this study present an array of issues contributing to its occurrence and distribution. Raw meat was said to be a primary source of contamination in the processing of a local meat delicacy called “Tsire/suya” (Uzeh et al. 2006). Power supply presents a significant factor contributing to the entry of S. aureus into the meat due to thawing (Adesokan et al. 2020). Also, street-vended foods recorded a high prevalence (Achi and Madubuike 2007), and this was linked to ease of contamination (Alonge et al. 2017) during the processing, e.g. use of contaminated water (Okonko et al. 2008b), distribution by hawking with poor packaging (Bello et al. 2013) and poor hygiene of handlers (Gulani et al. 2016; Odetokun et al. 2018), and poor sanitation at the markets/retail points (Akagha et al. 2015).

Live animals sampled with high prevalence were associated with poor hygiene of farm hands, inadequate sanitary conditions at the farms (Yakubu et al. 2020), and poor management practices with indiscriminate use of antimicrobials in animals (Adesiji et al. 2011; Suleiman et al. 2012; Abdulrahman et al. 2018). Other risk factors reported to influence the prevalence of S. aureus were milking materials, e.g. knives, slaughter slabs, etc. (Obadina et al. 2014; Ghali-Mohammed et al. 2022) that serve as easy entry points for S. aureus into the food chain. Processing plants, traditional milking, and milk cuddling methods (Esonu et al. 2021) were also highly incriminated, albeit some of the processing techniques were shown to reduce contamination of the food, among which are heating/Smoking of meat (Adeyeye et al. 2015; Amaeze et al. 2016) and fish (Orogu et al 2018) that showed low prevalence linked to the inability of S. aureus to survive under high temperatures. Spices used to flavour grilled meat and fish were also reported to reduce the occurrence of bacterial isolates (Adeyeye 2017). Proper storage and packaging (Ogofure and Igbinosa (2021) were also seen to reduce the occurrence of isolates in samples. Weather (rainy season) was also shown to have a resultant effect on the cultured isolates (Oyet et al. 2020). Furthermore, safe handling of food alongside appropriate food processing practices, ensuring a cold chain, proper cleaning, disinfecting equipment, limiting cross-contamination, and minimizing food contamination in all food chain aspects are necessary preventive measures (Kadariya et al. 2014).

However, it is crucial to note that the sampling procedures, antimicrobial susceptibility testing (AST) method, and molecular techniques used in most studies may have influenced their findings. The sampling methods designed for each of the studies differed from swabs samples from carcasses (Omoshaba et al. 2020) and surfaces (Oranusi et al. 2006) to portions of the meat or fish sampled (Olukemi et al. 2015). For AST, the most commonly used method employed was the Kirby-Bauer disk diffusion method which only gives the results of resistance/susceptibility phenotypically. This method does not give room for detecting the minimum concentration at which the agent can inhibit bacterial growth. Molecular characterization results were also influenced by the method used. The most commonly employed method was the simple PCR, which did not allow elaborate detection of genes present in the isolates, as seen in the results. Only studies that employed more extensive methods like whole genome sequencing (Ogundipe et al. 2020) yielded in-depth results. Most studies in this review did not include molecular detection of ARGs. This resulted in limited studies reporting the characterization of S. aureus in this review (Dike-Ndudim et al. 2014; Owuna et al. 2015; Ribah and Manga 2018). Also, studies that sought to detect the presence of MRSA did not require molecular characterization and relied on phenotypic results from the screening media used (Umaru et al. 2014; Grema et al. 2015). Future studies in Nigeria should focus more on the molecular detection and typing of S. aureus contamination of food of animal origin while detailing the origin and source of the staphylococcal contamination to control FBIs.

Implications and limitations

Our study emphasized the need to control S. aureus in animal-derived foods in Nigeria. This information is useful to policymakers for necessary intervention in protecting the public from S. aureus contamination of food along the animal-derived food chain in Nigeria. A major limitation of this systematic review is the availability of a few reports on the detailed molecular characterization of S. aureus in various foods from animal sources. Furthermore, only one study reported the use of the MIC in determining the antibiotic susceptibility of S. aureus.

Conclusion

There is a variation in the occurrence and distribution of S. aureus in food of animal origin in Nigeria. Contamination levels were unsatisfactory compared to the standard. S. aureus isolates show high resistance to most commonly used antibiotics (beta-lactams antibiotics, tetracycline, first and second-generation cephalosporins, trimethoprim, ciprofloxacin) and carry genes capable of evading host immune systems and cause serious clinical conditions. These findings have been linked to various factors, including poor sanitation, processing, indiscriminate use of antimicrobials, improper processing methods, storage, packaging, and distribution. Our findings established a need to address the various entry points of S. aureus into the food chain in Nigeria. Special care is required to maintain hygiene, proper processing techniques, and food storage and to reduce the indiscriminate use of antimicrobials in food animals to avoid staphylococcal contamination. There is a need for a detailed molecular characterization of S. aureus in various foods from animal sources. There is a need to improve the condition of processing and storage plants to improve the quality of food of animal origin available for human consumption. In addition, awareness of the need for proper hygiene and sanitation during food handling, adequate packaging to decrease contamination, and the appropriate use of antimicrobials in food animals. Quality control points for processing various food animal products need to be designed and implemented.

Availability of data and materials

All data generated during this study are included in this article and its additional files.

References

  • Abdulrahman HI, Geidam YA, Abubakar MB, Gashua MM, Gulani IA, Galadima HB (2018) Phenotypic detection and antibiogram of Staphylococcus aureus from poultry processing units in Maiduguri, Borno State, Nigeria. Asian J Res Anim Vet Sci 1(1):1–8

    Google Scholar 

  • Abebe R, Hatiya H, Abera M, Megersa B, Asmare K (2016) Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed. South Ethiopia BMC Vet Res 12(1):270

    Article  PubMed  Google Scholar 

  • Abolagba OJ, Igbinevbo EE (2010) Microbial load of fresh and smoked fish marketed in Benin metropolis. Nigeria Res J Fish Hydrobiol 5(2):99–104

    Google Scholar 

  • Abunna F, Abriham T, Gizaw F, Beyene T, Feyisa A, Ayana D, Mamo B, Duguma R (2016) Staphylococcus aureus: isolation, identification and antimicrobial resistance in dairy cattle farms, municipal abattoir and personnel in and around Asella. Ethiopia J Vet Sci Technol 7:383

    Google Scholar 

  • Achi OK, Madubuike CN (2007) Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from retail ready-to-eat foods in Nigeria. Res J Microbiol 2(6):512–523

    Google Scholar 

  • Adegunloye DV (2013) Microbial composition of the abattoir environment and its health implications on the quality of fresh cow meat sold in Akure, Ondo State, Nigeria. WIT Transactions Ecol Environ 170:57–65

    Article  Google Scholar 

  • Adesiji Y, Alli O, Adekanle M, Jolayemi J (2011) Prevalence of Arcobacter, Escherichia coli, Staphylococcus aureus and Salmonella species in retail raw chicken, pork, beef and goat meat in Osogbo. Nigeria Sierra Leone J Biomed Res 3(1):8–12

    Google Scholar 

  • Adesokan HK, Funso-Adu K, Okunlade OA (2020) Foodborne pathogens on meat stored in major central cold rooms in Ibadan and their susceptibility to antimicrobial agents. Folia Vet 64(2):1–10

    Article  Google Scholar 

  • Adetunji VO, Odetokun IA (2011) Bacterial hazards and critical control points in goat processing at a typical tropical abattoir in Ibadan. Nigeria Int J Anim Vet Adv 3(4):249–254

    Google Scholar 

  • Adetunji VO, Odetokun IA (2013) Contamination and critical control points (CCPs) along the processing line of sale of frozen poultry foods in retail outlets of a typical market in Ibadan. Nigeria Malays J Microbiol 9(4):289–294

    Google Scholar 

  • Adeyeye SAO (2017) Effect of processing methods on quality and safety of suya, a West African grilled meat. J Culin Sci Technol 15(2):158–170

    Article  Google Scholar 

  • Adeyeye SAO, Oyewole OB, Obadina AO, Omemu AM, Adeniran OE, Oyedele HA, Abayomi SO (2015) Quality and safety assessment of traditional smoked fish from Lagos State. Nigeria Int J Aquac 5(15):1–9

    Google Scholar 

  • Akagha T, Gugu T, Enemor E, Ejikeugwu P, Ugwu B, Ugwu M (2015) Prevalence and antibiogram of Salmonella species and Staphylococcus aureus in retail meats sold in Awka metropolis, Southeast Nigeria. Int J Biol Pharm Res 6(12):924–929

    Google Scholar 

  • Akinwumi FO, Adegbehingbe KT (2015) Microbiological analysis of three of smoked fish obtained from the Ondo State. Nigeria Food Public Health 5(4):122–126

    Google Scholar 

  • Alonge OO, Wakkala FI, Ogbaga CC, Akindele KA (2017) Bacterial analysis of barbecued meat (Suya) from selected locations within Abuja, Nigeria. 2017 13th International Conference on Electronics, Computer and Computation (ICECCO), 1–5

  • Amaeze N, Aboh MI, Amiohu FE, Olatunji T, Oladosu P (2016) Microbial profile, antibiotic sensitivity and heat resistance of bacterial isolates from commercial roasted beef (suya) in Abuja. Nigeria J Phytomedicine Ther 15(2):22–30

    Google Scholar 

  • Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655

    Article  Google Scholar 

  • Ateba CN, Mbewe M, Moneoang MS, Bezuidenhout CC (2010) Antibiotic-resistant Staphylococcus aureus isolated from milk in the Mafikeng Area, North West province. South Africa, S Afr J Sci, p 106

    Google Scholar 

  • Bello OO, Bello TK, Bankole SA (2013) Occurrence of antibiotic-resistant Staphylococcus aureus in some street-vended foods in Ogun State. Nigeria J Adv Biol 1(1):21–28

    Google Scholar 

  • Beshiru A, Igbinosa IH, Igbinosa EO (2021) Characterization of enterotoxigenic Staphylococcus aureus from ready-to-eat seafood (RTES). LWT 135:110042

    Article  CAS  Google Scholar 

  • Bodunde RS, Ogidi CO, Akinyele BJ (2019) Load and antibiotic susceptibility pattern of microorganisms in muscle foods sold in Akure, Southwest Nigeria. J Food Qual Hazards Control 6:30–36

    CAS  Google Scholar 

  • Cretenet M, Even S, Le Loir Y (2011) Unveiling Staphylococcus aureus enterotoxin production in dairy products: a review of recent advances to face new challenges. Dairy Sci Technol 91(2):127–150

    Article  CAS  Google Scholar 

  • Deddefo A, Mamo G, Leta S, Amenu K (2022) Prevalence and molecular characteristics of Staphylococcus aureus in raw milk and milk products in Ethiopia: a systematic review and meta-analysis. Food Contam 9:8

    Article  Google Scholar 

  • Dike-Ndudim JN, Egbuobi RC, Onyeneke EN, Uduji HI, Nwagbaraocha MA, Ogamaka IA, Okorie HM, Egbuobi LN, Opara AU (2014) Microbial status of smoked fish, Scombia Scombia sold in Owerri, Imo State. Nigeria Afr J Clin Experimental Microbiol 15(1):35–39

    Google Scholar 

  • Do Prado PC, Matias CL, Goulart JQ, Pinto AT (2021) Most involved microorganisms in foodborne diseases outbreaks: A systematic review. Braz J Dev 7(11):106900–106916

    Article  Google Scholar 

  • Edema MO, Atayese AO (2006) Bacteriological quality of cracked eggs sold for consumption in Abeokuta, Nigeria. Int J Poult Sci 5:772–775

    Article  Google Scholar 

  • Edema MO, Osho AT, Diala CI (2008) Evaluation of microbial hazards associated with the processing of Suya (a grilled meat product). Sci Res Essays 3(12):621–626

    Google Scholar 

  • Efuntoye MO, Olurin KB, Jegede GC (2012) Bacterial flora from healthy Clarias gariepinus and their antimicrobial resistance pattern. Adv J Food Sci Technol 4(3):121–125

    CAS  Google Scholar 

  • Egege SR, Akani NP, Nwankwo CEI (2020) Detection of Methicillin-Resistant Staphylococcus aureus in ready-to-eat shellfish (Corbiculid heterodont) in Bayelsa State. Nigeria Microbiol Res J Int 30(3):22–35

    Article  Google Scholar 

  • Ehizibolo DO, Chukwu CO, Chukwu ID, Muhammad MJ, Olabode AO (2007) Occurrence of foodborne bacterial pathogens in smoked fish at retail level in Jos. Nigeria Nig Vet J 28(1):21–26

    Google Scholar 

  • Esonu DO, Ismail S, Ajala A, Yusuf SM, Otolorin RG (2021) Occurrence and antimicrobial susceptibility patterns of Staphylococcus aureus and Salmonella species in fresh milk and milk products sold in Zaria and environs, Kaduna State. Nigeria Sahel J Vet Sci 18(2):1–8

    Google Scholar 

  • Eze VC, Nwosu I (2012) Evaluation of microbial quality of fresh goat meat sold in Umuahia market, Abia State. Nigeria Pak J Nutr 11(9):880–884

    Article  Google Scholar 

  • GBD (2019) Meningitis and Antimicrobial Resistance Collaborators (2023) Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 22(8):685–711

    Google Scholar 

  • Gebremedhin EZ, Ararso AB, Borana BM, Kelbesa KA, Tadese ND, Marami LM, Sarba EJ (2022) Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta. Central Ethiopia Vet Med Int 6:6544705

    Google Scholar 

  • Ghali-Mohammed I, Odetokun IA, Raufu IA, Adetunji VO (2022) Handling practices and contamination of raw milk sold for consumption in markets of Kwara State. Nigeria Sokoto J Vet Sci 20(1):50–58

    Article  Google Scholar 

  • Ghia CJ, Waghela S, Rambhad G (2020) A systemic literature review and meta-analysis reporting the prevalence and impact of Methicillin-Resistant Staphylococcus aureus infection in India. Infect Dis: Res Treatment 5:13

    Google Scholar 

  • Grema HA, Geidam YA, Gadzama GB, Ameh JA, Gulani SA, I, (2015) Methicillin Resistant Staphylococcus aureus (MRSA) and Methicillin Resistant Coagulase Negative Staphylococci (MRCoNS) isolated from fish and fish handlers in Maiduguri, Nigeria. Adv J Food Sci Technol 9:494–502

    Article  CAS  Google Scholar 

  • Gulani IA, Geidam YA, Adamu L, Lawal JR, Abadam FA (2016) Prevalence and phenotypic detection of methicillin resistance Staphylococcus aureus between ruminants butchered for humanoid intake and animal handlers in Maiduguri. Nigeria J Adv Vet Anim Res 3(2):152–159

    Article  Google Scholar 

  • György É, Laslo É, Onodi I (2021) Influence of milk used for cheese making on microbiological aspects of Camembert-type cheese. Acta Univ Sapientiae Aliment 14:84–94

    Google Scholar 

  • Havaei SA, Ghanbari F, Rastegari AA, Azimian A, Khademi F, Hosseini N, Ebrahimzadeh Namvar A, Vaez H, Havaei SM, Shahin SM (2014) Molecular typing of Hospital-Acquired Staphylococcus aureus isolated from Isfahan. Int Sch Res Notices, Iran, pp 1–6

    Google Scholar 

  • Hoque MN, Das ZC, Rahman ANMA, Haider MG, Islam MA (2018) Molecular characterization of Staphylococcus aureus strains in bovine mastitis milk in Bangladesh. Int J Vet Sci Med 6(1):53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igbinosa EO, Beshiru A, Akporehe LU, Oviasogie FE, Igbinosa OO (2016a) Prevalence of Methicillin-Resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin City, Nigeria: Implications for public health. Int J Environ Res Public Health 13(10):949

  • Igbinosa EO, Beshiru A, Akporehe LU, Ogofure AG (2016b) Detection of methicillin-resistant staphylococci isolated from food producing animals: A public health implication. Vet Sci 13:949

    Google Scholar 

  • Iroha I, Ugbo EC, Ilang DC, Oji AE, Ayogu TE (2011) Bacteria contamination of raw meat sold in Abakaliki, Ebonyi State Nigeria. J Public Health Epidemiol 3(2):49–53

    Google Scholar 

  • Jaja IF, Green E, Muchenje V (2018) Aerobic mesophilic, coliform, Escherichia coli, and Staphylococcus aureus counts of raw meat from the formal and informal meat sectors in South Africa. Int J Environ Res Pub Health 15(4):819

    Article  Google Scholar 

  • Joshi N, Joshi RK (2010) Bacteriological quality of meat sold in retail market in Uttar Pradesh. J Vet Pub Health 8(2):137–139

    Google Scholar 

  • Kadariya J, Smith TC, Thapaliya D (2014) Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int 2014:827965

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkan S, Göksoy EÖ, Kaya O (2005) Identification and antimicrobial susceptibility of Staphylococcus aureus and coagulase negative staphylococci from bovine mastitis in the Aydin Region of Turkey. Turkish J Vet Anim Sci 29(3):791–796

    CAS  Google Scholar 

  • Kumar R, Yadav BR, Singh RS (2010) Genetic determinants of antibiotic resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Curr Microbiol 60(5):379–386

    Article  CAS  PubMed  Google Scholar 

  • Kümmel J, Stessl B, Gonano M, Walcher G, Bereuter O, Fricker M, Grunert T, Wagner M, Ehling-Schulz M (2016) Staphylococcus aureus entrance into the dairy chain: Tracking S. aureus from dairy cow to cheese. Front Microbiol 7:1603

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuncara MC, Yuliati FN, Prahesti KI (2022) The total plate count, Staphylococcus aureus, and pH value of raw chicken meat sold at the traditional markets in Maros regency. IOP Conf. Ser. Earth Environ Sci 788:012157

    Google Scholar 

  • Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2(1):63–76

    PubMed  Google Scholar 

  • Lozano C, Gharsa H, Ben Slama K, Zarazaga M (2016) Torres C. Staphylococcus aureus in animals and food: Methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms 4(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Maharjan S, Rayamajhee B, Chhetri VS, Sherchan SP, Panta OP, Karki TB (2019) Microbial quality of poultry meat in an ISO 22000:2005 certified poultry processing plant of Kathmandu valley. Food Contam 6:8

    Article  Google Scholar 

  • Mourad O, Hossam H, Zbys F, Ahmed E (2016) Rayyan — a web and mobile app for systematic reviews. Syst Rev 5:210

    Article  Google Scholar 

  • Ndahi MD, Kwaga JKP, Bello M, Kabir J, Umoh VJ, Yakubu SE, Nok AJ (2014) Prevalence and antimicrobial susceptibility of Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains from raw meat and meat products in Zaria. Nigeria Lett Appl Microbiol 58(3):262–269

    Article  CAS  PubMed  Google Scholar 

  • Obadina AO, Oyewole OB, Ajisegiri OA (2014) Identification of hazards and critical control point (CCP) for “Suya” processing in South-West Nigeria. J Food Process Preserv 38:2057–2060

    Article  Google Scholar 

  • Odetokun IA, Ballhausen B, Adetunji VO, Ghali-Mohammed I, Adelowo MT, Adetunji SA, Fetsch A (2018) Staphylococcus aureus in two municipal abattoirs in Nigeria: Risk perception, spread and public health implications. Vet Microbiol 216:52–59

    Article  PubMed  Google Scholar 

  • Odetokun IA, Ghali-Mohammed I, Alhaji NB, Nuhu AA, Oyedele HA, Adetunji ASA, VO, (2020) Occupational health and food safety risks in Ilorin, Northcentral Nigeria: A cross-sectional survey of slaughterhouse workers. Food Prot Trends 40(4):241–250

    Google Scholar 

  • Odetokun IA, Atane A, Mohammed KM, Alhaji NB, Ghali-Mohammed I, Elelu N (2021a) Bacteria contamination of surfaces and facilities at the ultra-modern abattoir, Ilorin, Northcentral. Nigeria J Sustainable Vet Allied Sci 1(2):104–109

    Google Scholar 

  • Odetokun IA, Borokinni BO, Bakare SD, Ghali-Mohammed I, Alhaji NB (2021b) A cross-sectional survey of consumers’ risk perception and hygiene of retail meat: A Nigerian study. Food Prot Trends 41(3):274–283

    Article  Google Scholar 

  • Odetokun IA, Maurischat S, Adetunji VO, Fetsch A (2022) Methicillin-Resistant Staphylococcus aureus from municipal abattoirs in Nigeria: Showing highly similar clones and possible transmission from slaughter animals to humans. Foodborne Pathog Dis 19(1):56–61

    Article  CAS  PubMed  Google Scholar 

  • Ogofure AG, Igbinosa EO (2021) Effects of rinsing on Staphylococcus aureus load in frozen meats and fish obtained from open markets in Benin City. Nigeria Afr J Clin Experiment Microbiol 22(2):294–299

    Article  Google Scholar 

  • Ogundipe FO, Ojo OE, Feßler AT, Hanke D, Awoyomi OJ, Ojo DA, Akintokun AK, Schwarz S, Maurischat S (2020) Antimicrobial resistance and virulence of methicillin-resistant Staphylococcus aureus from human, chicken and environmental samples within live bird markets in three Nigerian cities. Antibiotics 9:588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okonko IO, Ogunnusi TA, Ogunjobi AA, Adedeji AO, Adejoye OD, Babalola ET, Ogun AA (2008a) Microbial studies on frozen shrimps processed in Ibadan and Lagos. Nigeria Sci Res Essays 3(11):537–546

    Google Scholar 

  • Okonko IO, Ogunjobi AA, Fajobi EA, Onoja BA, Babalola ET, Adedeji AO (2008b) Comparative studies and microbial risk assessment of different Ready-to-Eat (RTE) frozen sea-foods processed in Ijora-olopa, Lagos State. Nigeria Afr J Biotechnol 7(16):898–2901

    Google Scholar 

  • Okorie-Kanu OJ, Anyanwu MU, Ezenduka EV, Mgbeahuruike AC, Thapaliya D, Gerbig G, Ugwuijem EE, Okorie-Kanu CO, Agbowo P, Olorunleke S, Nwanta JA, Chah KF, Smith TC (2020) Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS ONE 15(5):e0232913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okpo N, Abdullahi I, Whong CM, Ameh J (2017) Occurrence and antibiogram of Staphylococcus aureus in dairy products consumed in parts of Kaduna State. Nigeria Bayero J Pure Appl Sci 9(2):225

    Article  Google Scholar 

  • Ologhobo AD, Omojola AB, Ofongo ST, Moiforay S, Jibir M (2010) Safety of street vended meat products-chicken and beef Suya. Afr J Biotechnol 9(26):4091–4095

    Google Scholar 

  • Olukemi AY, Osas IM, Olubukola OJ, Jeremiah OI (2015) Bacterial contamination associated with retail chicken carcasses in Osogbo. Nigeria J Health Allied Sci NU 5(4):45–50

    Article  Google Scholar 

  • Oluwafemi F, Simisaye MT (2006) Extent of microbial contamination of sausages sold in two Nigerian cities. Afr J Biomed Res 9:133–136

    Google Scholar 

  • Omoshaba EO, Ojo OE, Oyekunle MA, Sonibare AO, Adebayo AO (2020) Methicillin-resistant Staphylococcus aureus (MRSA) isolated from raw milk and nasal swabs of small ruminants in Abeokuta. Nigeria Trop Anim Health Prod 52(5):2599–2608

    Article  CAS  PubMed  Google Scholar 

  • Oranusi S, Galadima M, Umoh VJ (2006) Toxicity test and bacteriophage typing of Staphylococcus aureus isolates from food contact surfaces and foods prepared by families in Zaria. Nigeria Afr J Biotechnol 5(4):362–365

    Google Scholar 

  • Orogu JO, Ehiwario NJ, Okobia UB (2018) Bacteriological examination of barbecue fish. Indo Ame J Pharm Sci 5(6):5240–5244

    CAS  Google Scholar 

  • Owuna G, Abimiku RH, Nkene HI, Joseph WG, Ijalana OO (2015) Isolation and antibiotic susceptibility of Staphylococcus aureus from fresh poultry meat sold in Keffi Metropolis. Nigeria Int J Res Stud Bios 3(11):1–5

    Google Scholar 

  • Oyet GI, Achinewhu SC, Kiin-Kabari DB, Akusu MO (2020) Microbiological quality of selected street vended foods during wet and dry season in parts of Port Harcourt metropolis, Rivers State. Nigeria Res J Food Sci Nutr 5(2):35–45

    Article  Google Scholar 

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  • Palupi KT, Adiningsih MW, Sunartatie T, Afiff U, Pumawannan T (2010) Pengujian penyeberangan Merak Indones. J Vet Sci Med 2:1–14

    Google Scholar 

  • Rall VLM, Miranda ES, Castilho IG, Camargo CH, Langoni H, Guimarães FF, Araújo Júnior JP, Fernandes Júnior A (2014) Diversity of Staphylococcus species and prevalence of enterotoxin genes isolated from milk of healthy cows and cows with subclinical mastitis. J Dairy Sci 97(2):829–837

    Article  CAS  PubMed  Google Scholar 

  • Ribah MI, Manga SS (2018) Prevalence of Staphylococcus aureus in some street vended ready-to-eat meat products in Birnin Kebbi metropolis: A potential food safety. J Environ Tox Pub Health 3:25–29

    Google Scholar 

  • Salihu MD, Junaidu AU, Magaji AA, Aliyu RM, Yakubu Y, Shittu A, Ibrahim MA (2010) Bacteriological quality of traditionally prepared fried ground beef (Dambun nama) in Sokoto. Nigeria Adv J Food Sci Technol 2(3):145–147

    Google Scholar 

  • Salman KK, Salawu RO, Salawu MB, Osawe OW (2021) Food demand in Nigeria. J Rural Econ Dev 23(1):1–11

    Google Scholar 

  • Sengupta R, Das R, Ganguly S, Mukhopadhayay SK (2012) Commonly occurring bacterial pathogens affecting the quality of chicken meat. Int J Chem Biochem Sci 1:21–23

    Google Scholar 

  • Suleiman AB, Umoh VJ, Shaibu KJKP, SJ, (2012) Prevalence and antibiotic resistance profiles of Methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine mastitic milk in Plateau State. Nigeria Int Res J Microbiol 2(8):264–270

    Google Scholar 

  • Suleiman AB, Umoh VJ, Kwaga JKP, Shaibu SJ (2013) Enterotoxigenicity and antibiotic resistance of Staphylococcus aureus isolated from sub-clinical bovine mastitis milk in Plateau State. Nigeria Res J Microbiol 8(2):101–107

    Article  Google Scholar 

  • Taiwo S, Onile B, Akanbi A II (2004) Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates in Ilorin. Nigeria Afr J Clin Exp Microbiol 5(2):189–197

    Google Scholar 

  • Turutoglu H, Ercelik S, Ozturk D (2006) Antibiotic resistance of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis. Bull Vet Inst Pulawy 50:41–45

    Google Scholar 

  • Umaru GA, Kabir J, Umoh VJ, Bello M, Jacob KP (2014) Occurrence of vancomycin-resistant Staphylococcus aureus (VRSA) in fresh and fermented milk in Nigeria: A preliminary report. Int J Public Health Epidemiol 3(8):54–58

    Google Scholar 

  • Usman R, Mustapha B, Mohammed FI (2016) Isolation and identification of Methicillin Resistant Staphylococcus aureus (MRSA) from traditionally fermented milk “nono” and yoghurt in Zaria metropolis, Nigeria. Int J Comprehensive Leading Research Sci 55:42–50

    Google Scholar 

  • Uzeh RE, Ohenhen RE, Adeniji OO (2006) Bacterial contamination of tsire-suya, a Nigerian meat product. Pak J Nutr 5(5):458–460

    Article  Google Scholar 

  • Uzoigwe NE, Nwufo CR, Nwankwo CS, Ibe SN, Udujih ACO, OG, (2021) Assessment of bacterial contamination of beef in slaughterhouses in Owerri zone, Imo state. Nigeria Sci Afr 12:e00769

    CAS  Google Scholar 

  • Yakubu A, Abdullahi I, Whong CZ, Olayinka B (2020) Prevalence and antibiotic susceptibility profile of Staphylococcus aureus from milk and milk products in Nasarawa State. Nigeria Sokoto J Vet Sci 18(1):1–12

    Article  Google Scholar 

  • Yamada H (2013) Chapter 101 - Tea Catechins and Staphylococcus aureus. In: Preedy VR (ed) Tea in Health and Disease Prevention. Academic Press, pp 1207–1213

    Chapter  Google Scholar 

  • Yusuf AB, Gulumbe BH, Kalgo AB, ZM, (2019a) Bacteriological Assessment of Fresh Beef Sold in Birnin Kebbi Central Market, Kebbi State, Nigeria. Int J Med Res Health Sci 8(1):127–131

    Google Scholar 

  • Yusuf AB, Gulumbe BH, Aliyu B, Kalgo ZM (2019b) Bacteriological assessment of fresh beef sold in Birnin Kebbi central market, Kebbi State, Nigeria. Int J Med Res Health Sci 8(1):127–131

    Google Scholar 

  • Zhang C, Song L, Chen H, Liu Y, Qin Y, Ning Y (2012) Antimicrobial susceptibility and molecular subtypes of Staphylococcus aureus isolated from pig tonsils and cow’s milk in China. Can J Vet Res 76(4):268–274

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific funding.

Author information

Authors and Affiliations

Authors

Contributions

IAO: Conceptualization, Investigation, Methodology, Data curation, Writing – original draft, Writing – review editing. MAA: Investigation, Methodology, Data curation, Writing – original draft, Writing – review editing. ROA: Investigation, Methodology, Writing – review editing. AOA: Investigation, Methodology, Writing – review editing. ANA: Investigation, Methodology, Data curation, Writing – review editing. IG-M: Conceptualization, Writing – original draft, Writing – review editing. AIA: Methodology, Writing – original draft, Writing – review editing. AF: Methodology, Writing – original draft, Supervision, Writing – review editing.

Corresponding author

Correspondence to Ismail Ayoade Odetokun.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1. 

PRISMA 2020 checklist for Staphylococcus aureus contamination of animal-derived foods in Nigeria: a systematic review, 2002—2022.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odetokun, I.A., Adetona, M.A., Ade-Yusuf, R.O. et al. Staphylococcus aureus contamination of animal-derived foods in Nigeria: a systematic review, 2002—2022. Food saf. and Risk 10, 6 (2023). https://doi.org/10.1186/s40550-023-00106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40550-023-00106-y

Keywords