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Abstract

Background: Aflatoxin contamination of grain is a major constraint to sustained quality cereal production. The
causative fungi, Aspergillus species infect crops in the field and continue to do so post-harvest where they produce
toxins in store. The current study aimed at establishing seasonal variation in levels and types of aflatoxins in maize
from the Eastern region of Kenya- the hot-spot for aflatoxicosis. Maize kernels were collected from farmers’
households in May and December 2013 -2 months after long rain and short rain season respectively. The total
aflatoxins were quantified using Enzyme-Linked Immunosorbent Assay (ELISA), while the toxin composition was
determined using Thin-Layer Chromatography (TLC) and confirmed using High-Performance Liquid
Chromatography (HPLC).

Results: Generally, grain harvested after the long rains (May) had significantly (p = 0.019) lower aflatoxin levels and
variation (5.68 ± 6.31 ppb, 100% Aflatoxin B1) than that of short rains (10.77 ± 10.14 ppb, 72% AFB1). Additionally,
from the long and short rain seasons, the samples exceeding regulatory allowed limit (10 ppb) were 16 and 44%
respectively.

Conclusion: In Eastern Kenya, consumption of maize harvested in the long rain season presents a recurrent risk of
exposure to low levels of AFB1; while consumption of maize harvested after the short rain season presents a risk of
seasonal exposure to high levels and mixed type of toxins However, this long term risk of exposure to aflatoxins is
poorly documented hence these findings necessitate mitigation measures because AFB1– is a potent class 1
mutagenic toxin likely to cause liver cancer.
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Background
Over the last four decades, Kenya has become one of
the leading countries in terms of incidence and severity
of human exposure to aflatoxins (Mehl and Cotty 2010).
The most severe episode in 2004 had 317 reported cases
of which 125 were fatal (Probst et al. 2007). It is believed
that the magnitude of exposure could be higher than re-
ported for lack of robust monitoring systems. Consump-
tion of aflatoxin contaminated grain has adverse health
implications such as abdominal distensions, immune
suppression (Cusumano et al. 1996), cancer, stunted
growth in children (Gong et al. 2004) including death at
high level of exposure (Probst et al. 2011). The majority
of the fatalities reported in Kenya have occurred in the
lower Eastern region of the country, which lead to a

widely accepted view that the region is the hot-spot of
aflatoxicosis.
The factors underlying repeated aflatoxicosis episodes in

the hot-spot area of Kenya are yet to be unravelled. However,
previous studies attribute high residual mycotoxin levels to
climatic changes while others link it to ongoing anthropo-
genic causes such as delayed harvesting, poor drying and
storage conditions (Torres et al. 2014). Among the important
climatic factors are rainfall and temperature which affect re-
sidual grain moisture content and density of the aflatoxigenic
fungi (Cotty and Jaime-Garcia 2007; Milani 2013). There is
evidence showing a positive correlation between aflatoxins
level and climatic seasons. This has been documented in in
Nepal where aflatoxins were higher in crops harvested dur-
ing the dry season (Gautam et al. 2008) while in Sierra
Leone, human exposure to aflatoxins and ochratoxins ap-
peared higher in the dry season than the rainy one suggest-
ing higher contamination (Jonsyn-Ellis 2001).
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The mentioned studies support the hypothesis that
aflatoxicosis is largely seasonal with an opportunity for
prediction hence mitigation. Therefore, it’s imperative to
determine the nature of risk in the hot-spot region for
appropriate intervention. The current study sought to
achieve two objectives (i) establish the variation of afla-
toxins in maize by cropping season and (ii) determine
the predominant type of toxin in each respective season.
To the best of our knowledge, this information is lacking
hence hampering long-term management efforts in the
hot-spot region of Eastern Kenya.

Methods
Sample collection
The study site (Eastern Kenya) is semi-arid with an an-
nual conditions as follows: rainfall 250–500 mm, RH
60–70% and temperature 23–34 °C (Freeman and Coe
2002). Samples were collected in May and December
2013 approximately 2 months after harvest following the
long and short rain season of the year. An altitudinal
transect Machakos 1° 31′ 0.0120″ S37° 16′ 0.0120″ E
[1000–1600 masl] to Kitui 1° 22′ 1.0560″ S38° 0′
37.9800″ E [400–1163 masl]) was selected from which
sampling points were set every 5 km in the 100 Km
road. At each sampling, farmers on both sides of the
main road were randomly selected. A sample consisted
of half a kilogram of shelled maize Kernels that was
being used for immediate consumption. Samples were
separately kept in brown Khaki bags, labelled and trans-
ported in a cool box to the laboratory, stored at 4 °C
until analysis. During the second season, repeated sam-
pling was undertaken in the same areas. In total, about
200 samples were collected in both seasons but were
segregated depending on whether the farmer had har-
vested the maize from their farm or purchased during
either of the seasons. All samples from farmers who had
purchased maize were excluded from the current results.
Due to poor harvest experienced during in 2013, most
farmers had purchased maize for their daily use. Thus,
only a total of 50 maize samples from both seasons were
analysed further.

Quantification of total aflatoxins
Maize Kernels were ground to fine powder using a mill
grinder. To 20 g of the maize powder, 100 ml of extrac-
tion solvent (70% methanol) was added in a conical
flask. The flask was covered with aluminium foil and
vortexed for 2 min. The mixture was then allowed to
settle then filtered (Whatman # 1). 10 ml of the filtrate
was drawn for aflatoxin testing using a solid phase direct
competitive Enzyme-Linked Immunosorbent Assay, fol-
lowing manufacturer’s instruction (HELICA Biosystems
Inc). The absorbance was read at 450 nm in a micro-
plate reader (ThermoScientific). A standard curve was

generated using the absorbance and the known concen-
trations of the six standards (HELICA Biosystems Inc).
The concentrations of the samples were interpolated
from the standard curve using GraphPad Prism
version 6.0.5.0.

Identification of aflatoxin types
Standard procedure for performing and analysis of aflatoxins
by TLC were followed as described by Jager et al. (2013).
Briefly, 20 g of maize powder was added to a 500 ml
flat-bottomed flask. Into it, a mixture of 25 g hyflosupercel,
200 ml chloroform, and 20 ml distilled water was added
then covered and shaken on a mechanical shaker for
30 min. After filtration (Whatman # 1) the first 100 ml was
collected and concentrated. Two-thirds of a column chro-
matography tube was filled with chloroform after which 5 g
of Na2SO4 was added. 10 g of silica gel slurry was trans-
ferred into the column and the setup allowed to stand for
15 min and 15 g of Na2SO4. The chloroform was drained
and extract was transferred into the silica gel column.
Hexane (100 ml) was added then drained followed by
100 ml of diethyl. Alfatoxins were eluted using 100 ml of a
chloroform-methanol mixture (ratio 145.5:4.5) and collected
into a round-bottomed flask for examination under UV light
at 360 nm while compared to the standards. Afterwards, the
positive samples were taken for further HPLC analysis in
order to confirm the identity of the individual toxins, at the
National Public Health Research Laboratories.

Data analysis
Prior to analysis, the “equality of variances” test was
used to inform the choice of T-test procedure. The test
revealed insufficient evidence of unequal variances (the
Folded F statistic F′ = 2.58, with p = 0.0240) between the
two seasons. Hence, a pooled T-test was used for com-
parison of the total aflatoxins in maize samples drawn
from the long and short rainfall seasons. The data was
analysed using R Software version (3.3.1). In addition to
comparison of the seasons, the number of samples unfit
for human consumption (above 10 ppb) as well as preva-
lence of the different aflatoxins was also determined.

Results
Quantification of total aflatoxins
In general, maize from the long rain season had signifi-
cantly (p = 0.0191) lower (mean ± SD) aflatoxin levels
(5.68 ± 6.31 ppb) than those from the short rain season
(10.77 ± 10.14 ppb) (Table 1).
Additionally, samples unsuitable for human consump-

tion (aflatoxin > 10 ppb) were 16% (long season) and
25% (short season) respectively.
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Identification of aflatoxin types
Four types of aflatoxins (B1, B2, G1 and G 2) were re-
ported with AFB1 in 100% of samples in the long rain
season while the short season were mixed aflatoxins. In
the short rains season, the levels of toxins in decreasing
order were: AFB1 72%, AFG1 28%, AFB2 8%, and the
least was AFG2 4%. Additionally, there were 12% of the
samples with AFB1 and AFG1 appearing as mixed
contamination (Table 2).

Discussion
Aflatoxin contamination of grain is an impediment to
quality food production and trade across the globe
(Kebede et al. 2012). In Kenya, it’s a life-threatening
phenomenon because aflatoxicosis occurs with concomi-
tant human fatalities. The current study was designed to
explain the observed high levels of aflatoxins in the re-
gion by separating contamination of grain that is due to
grain importation into the hot-spot region from that
which is due to local production. The findings show that
from 25% of grain consumed in 2013 in the sampled re-
gion, there is a twofold increase in aflatoxins recorded in
maize consumed during the short rain season compared
to the long rain season. Recently, in western Kenya-a
major maize and peanut producing region of the coun-
try, the incidence of three maize ear rots (Fusarium,
Penicillium, and Aspergillus) and their corresponding
toxins were severe during the long rain season than the

Table 1 Summary T-test statistics for comparison of the long
and short rain season

Season Sample(n) Mean aflatoxin Std Dev Std Err

Long Rain 25 5.68 6.31 1.26

Short Rain 25 10.77 10.14 2.03

Diff (1–2) −5.09 8.45 2.39

Means obtained after equality of variance and pooled T-test (DF, 48, t value
− 2.13, p = 0.0191)

Table 2 Seasonal variation of total aflatoxins (ppb) and toxin type in maize harvested after the long and short rain cropping season

Long cropping season (Season 1) n = 25 Short cropping season (Season 2) n = 25

Sample Code Total Toxins (ppb) Toxin Type Sample Code Total Toxins (ppb) Toxin Type

1EM14 3.6 B1 2EM02 30.0 B1, G1

1EM15 3.6 B1 2EM03 1.4 B1

1EM18 3.0 B1 2EM04 8.0 B1

1EM19 3.1 B1 2EM05 2.5 B1

1EM20 6.0 B1 2EM06 12.7 B1

1EM21 2.2 B1 2EM07 15.4 B2

1EM23 2.2 B1 2EM09 2.7 G1

1EM24 21.3 B1 2EM11 2.2 B1

1EM25 2.2 B1 2EM12 15.2 B2

1EM26 13.3 B1 2EM22 1.2 B1

1EM27 4.5 B1 2EM30 3.2 B1

1EM28 2.4 B1 2EM34 2.9 B1, G1

1EM29 1.2 B1 2EM35 24.3 G1

1EM30 4.0 B1 2EM42 2.0 B1

1EM32 3.5 B1 2EM43 1.5 B1

1EM33 18.4 B1 2EM51 1.6 B1

1EM35 1.9 B1 2EM52 3.2 B1

1EM36 5.1 B1 2EM54 19.2 B1

1EM41 2.6 B1 2EM55 10.0 G1

1EM42 23.7 B1 2EM61 2.6 B1

1EM45 2.8 B1 2EM63 27.0 G1

1EM46 4.3 B1 2EM66 19.8 B1

1EM47 3.0 B1 2EM86 25.6 B1, G1

1EM48 2.8 B1 2EM87 28.9 G2

1EM49 1.3 B1 2EM92 6.2 B1

Mean ± SD 5.68 ± 6.31 10.77 ± 10.14

Mean ± SD aflatoxin concentration independent t-tests show significant difference (p = 0.0191) between the long and short rain season

Obonyo and Salano International Journal of Food Contamination  (2018) 5:6 Page 3 of 5



short one (Juti 2017). While the recent findings could be
explained by the climatic differences between the two
agro-ecological zones (Mugo et al. 2016), the studies at-
test to seasonal variation in level toxins in food material.
The current findings form an important basis for plan-

ning intervention against dietary exposure to aflatoxins
since the rainfall pattern in major parts of the country is
bimodal characterised by long and short rainy seasons in-
terspersed with brief dry spells (Mugo et al. 2016). A sea-
sonal assessment of aflatoxin residues in food is an
important indicator of aflatoxicosis risk especially in view
of climatic changes precipitating hot and dry spells associ-
ated with increased aflatoxin contamination (Cotty and
Jaime-Garcia 2007; Kebede et al. 2012; Smith et al. 2016).
Adverse effects of consumption of aflatoxin contami-

nated food is linked to a large population of children
experiencing poor and stunted growth in Benin (Gong et
al. 2004) and in Eastern Kenya (Hoffmann et al. 2015).
We hypothesise that the reported stunting effects in
Eastern Kenya hot-spot may be attributable to peren-
nial consumption AFB1, −a potent class 1 mutagenic
and teratogenic toxin (Birch and Parker 2012; FAO,
United Nations 2017). The findings of the current
study correspond with the period when the most se-
vere case of aflatoxicosis occurred (between May and
June 2004) in Eastern Kenya after the long rain sea-
son (Anonymous 2004). This could be explained by
the predominant AFB1 observed in the current study
and also the same the same period. It is likely that in
2004, AFB1 levels were at a record high and resulted
in human fatalities (Probst et al. 2007).
The seasonal variations in levels of toxins is likely the

result of variations in the fungal community structure
between cropping seasons. That could explain why AFB1

is predominant in the long rain season while there
mixed toxins in the short season (Salano et al. 2016).
There is also possibility of complex fungal interactions
at their specific niche leading to differential toxin pro-
duction (Huang et al. 2011; Okoth et al. 2018). The pos-
sibility of intra – and interspecific interaction between
members of a fungi genus remains a confounding
phenomenon but deserves attention. Therefore, it re-
mains unclear why AFB2 and AFG1 were present in the
second season only whereas the fungi known to pro-
duce them were present in isolates from both seasons
(Salano et al. 2016).

Conclusions
The seasonal pattern of aflatoxin contamination of the
staple food –maize in Eastern Kenya, presents an oppor-
tunity for interventions such as biological control to re-
duce aflatoxins especially in the long rain season where
AFB1 is uniformly produced (Bandyopadhyay et al. 2007;
Cotty et al. 2008; Bandyopadhyay et al. 2016). While

there is a lack of feasible intervention, the risk of chronic
exposure to AFB1 remains high and poorly documented
in both cropping seasons. Hence the findings of this
study necessitate mitigation measures because AFB1– is
a potent class 1 mutagenic toxin likely to cause liver
cancer.
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